Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526342

RESUMO

In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E. coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E. coli (EAEC)-specific virulence factors. Here, we identified an E. coli O104:H4 isolate that carried a single nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E. coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E. coli O104:H4 virulence, primarily through an AggR-dependent mechanism.

2.
Front Cell Infect Microbiol ; 14: 1343858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469349

RESUMO

Introduction: The emergence of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae is an urgent and alarming One Health problem. This study aimed to investigate duplications of plasmid-encoded ESBL genes and their impact on antimicrobial resistance (AMR) phenotypes in clinical and screening isolates. Methods: Multi-drug-resistant bacteria from hospitalized patients were collected during routine clinical surveillance from January 2022 to June 2023, and their antimicrobial susceptibility patterns were determined. Genotypes were extracted from long-read whole-genome sequencing data. Furthermore, plasmids and other mobile genetic elements associated with ESBL genes were characterized, and the ESBL genes were correlated to ceftazidime minimal inhibitory concentration (MIC). Results: In total, we identified four cases of plasmid-encoded ESBL gene duplications that match four genetically similar plasmids during the 18-month surveillance period: five Escherichia coli and three Klebsiella pneumoniae isolates. As the ESBL genes were part of transposable elements, the surrounding sequence regions were duplicated as well. In-depth analysis revealed insertion sequence (IS)-mediated transposition mechanisms. Isolates with duplicated ESBL genes exhibited a higher MIC for ceftazidime in comparison to isolates with a single gene copy (3-256 vs. 1.5-32 mg/L, respectively). Conclusion: ESBL gene duplications led to an increased phenotypic resistance against ceftazidime. Our data suggest that ESBL gene duplications by an IS-mediated transposition are a relevant mechanism for how AMR develops in the clinical setting and is part of the microevolution of plasmids.


Assuntos
Antibacterianos , Ceftazidima , Humanos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Duplicação Gênica , Escherichia coli , Plasmídeos/genética , Enterobacteriaceae/genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 14(1): 1895, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253607

RESUMO

Clonal transmission and horizontal gene transfer (HGT) contribute to the spread of vancomycin-resistant enterococci (VRE) in global healthcare. Our study investigated vesiduction, a HGT mechanism via membrane vesicles (MVs), for vanA and vanB genes that determine vancomycin resistance. We isolated MVs for VRE of different sequence types (STs) and analysed them by nanoparticle tracking analysis. Selected MV samples were subjected to DNA sequence analysis. In resistance transfer experiments, vancomycin-susceptible enterococci were exposed to MVs and bacterial supernatants of VRE. Compared to bacteria grown in lysogeny broth (MVs/LB), cultivation under vancomycin stress (MVs/VAN) resulted in increased particle concentrations of up to 139-fold (ST80). As a key finding, we could show that VRE isolates of ST80 and ST117 produced remarkably more vesicles at subinhibitory antibiotic concentrations (approx. 9.2 × 1011 particles/ml for ST80 and 2.4 × 1011 particles/ml for ST117) than enterococci of other STs (range between 1.8 × 1010 and 5.3 × 1010 particles/ml). In those MV samples, the respective resistance genes vanA and vanB were completely verifiable using sequence analysis. Nevertheless, no vancomycin resistance transfer via MVs to vancomycin-susceptible Enterococcus faecium was phenotypically detectable. However, our results outline the potential of future research on ST-specific MV properties, promising new insights into VRE mechanisms.


Assuntos
Enterococcus faecium , Enterococos Resistentes à Vancomicina , Enterococcus faecium/genética , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/genética , Membranas
4.
Front Microbiol ; 14: 1228845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075913

RESUMO

Introduction: Horse clinics are hotspots for the accumulation and spread of clinically relevant and zoonotic multidrug-resistant bacteria, including extended-spectrum ß-lactamase producing (ESBL) Enterobacterales. Although median laparotomy in cases of acute equine colic is a frequently performed surgical intervention, knowledge about the effects of peri-operative antibiotic prophylaxis (PAP) based on a combination of penicillin and gentamicin on the gut microbiota is limited. Methods: We collected fecal samples of horses from a non-hospitalized control group (CG) and from horses receiving either a pre-surgical single-shot (SSG) or a peri-operative 5-day (5DG) course of PAP. To assess differences between the two PAP regimens and the CG, all samples obtained at hospital admission (t0), on days three (t1) and 10 (t2) after surgery, were screened for ESBL-producing Enterobacterales and subjected to 16S rRNA V1-V2 gene sequencing. Results: We included 48 samples in the SSG (n = 16 horses), 45 in the 5DG (n = 15), and 20 in the CG (for t0 and t1, n = 10). Two samples of equine patients receiving antibiotic prophylaxis (6.5%) were positive for ESBL-producing Enterobacterales at t0, while this rate increased to 67% at t1 and decreased only slightly at t2 (61%). Shannon diversity index (SDI) was used to evaluate alpha-diversity changes, revealing there was no significant difference between horses suffering from acute colic (5DG, SDImean of 5.90, SSG, SDImean of 6.17) when compared to the CG (SDImean of 6.53) at t0. Alpha-diversity decreased significantly in both PAP groups at t1, while at t2 the onset of microbiome recovery was noticed. Although we did not identify a significant SDImean difference with respect to PAP duration, the community structure (beta-diversity) was considerably restricted in samples of the 5DG at t1, most likely due to the ongoing administration of antibiotics. An increased abundance of Enterobacteriaceae, especially Escherichia, was noted for both study groups at t1. Conclusion: Colic surgery and PAP drive the equine gut microbiome towards dysbiosis and reduced biodiversity that is accompanied by an increase of samples positive for ESBL-producing Enterobacterales. Further studies are needed to reveal important factors promoting the increase and residency of ESBL-producing Enterobacterales among hospitalized horses.

5.
Infection ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030862

RESUMO

PURPOSE: Carbapenemase-producing Enterobacterales (CPE) pose a serious threat for healthcare facilities worldwide, yet the mode of transmission is often unclear. Recently, we recorded an increase of blaOXA-48-harboring isolates at our hospital associated with patients with previous medical treatment in the Ukraine. We used long-read whole genome sequencing (lrWGS) to characterize these isolates including their plasmids. METHODS: Samples were collected as part of clinical routine diagnostic or screening of multi-drug resistance bacteria (MDRB). Antimicrobial susceptibility testing was performed and all MDRB (n = 10) were sequenced by lrWGS for genotyping, identification of antimicrobial resistance (AMR) genes, and characterization of plasmids. RESULTS: While routine analysis of core genome multilocus sequence typing (cgMLST) did not show any genetic similarities between isolates, we found an unexpected high similarity in the plasmid diversity of different Enterobacterales in patients with previous medical treatment in the Ukraine. This included an IncL/M plasmid carrying blaOXA-48 and additional small non-AMR-coding plasmids. CONCLUSION: Our results show that lrWGS can be used in the routine setting to uncover similarities in plasmids and may give further information about potential epidemiologic associations. In the future, analysis of both AMR and non-AMR plasmids may provide an additional layer of information for molecular surveillance of CPE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...